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Abstract. Collisions between linear polar molecules that were electrostatically trapped were investigated.
The collisional transition from a low to a high field seeking state (inelastic collision) causes trap loss. The
efficiency of evaporative cooling is improved at higher elastic collision rates. We calculated cross-sections
of inelastic and elastic collision using a semi-classical treatment.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 33.80.Ps Optical cooling of molecules;
trapping – 33.90.+h Other topics in molecular properties and interactions with photons

1 Introduction

Trapping cold molecules has been considered difficult,
mainly because of its difficulty to decelerate molecules
using laser cooling. However, several groups have re-
cently developed effective methods for preparing ultra-
cold molecules and confining them in three-dimensional
traps. A Harvard group used static magnetic fields to trap
paramagnetic CaH molecules pre-cooled using buffer gas
collisions [1]. Takekoshi et al. trapped cesium dimers pro-
duced using the photo-association of laser-cooled Cs atoms
in focused CO2 laser beams [2]. Bethlem et al. deceler-
ated ND3 molecular beams using a time-varying inhomo-
geneous electric field and loaded them into an electrostatic
trap [3].

An electrostatic trap can only confine dipoles in the
low-field seeking state because Maxwell’s equation permits
a local field minimum but not a maximum. The stability of
the trap should be considered in relation to the Majorana
effect (the transition between quantum states, caused by
a change of the electric field direction) and inelastic col-
lisions, which cause the transition to high-field seeking
states. Both effects decrease as the energy gap between
the low and high field seeking states increases. Bethlem
et al. took advantage of the ND3 characteristics of a rel-
atively small inversion doublet and hence a large Stark
effect [3]. Bohn calculated the collision loss rate, when di-
atomic polar molecules in the 1Π state (Λ-doublet plays a
similar role to the inversion doublet) are electrostatically
trapped [4].

To expand the utility of the molecular trapping tech-
nology, we discuss the loss rate of electrostatically trapped
linear polar molecules (1Σ state). Linear polar molecules
can be trapped inside a quadrupole electrode by the
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second-order Stark effect. Alkali-halide molecules, in par-
ticular, have been considered to be advantageous in
achieving high trap potential with a relatively low elec-
tric field strength (<30 kV/cm) [5,6]. We analyzed the
Majorana effect with electrostatically confined linear po-
lar molecules in the (J = 1,M = 0) state, where J denotes
the quantum number of the total molecular angular mo-
mentum, and M is the quantum number of the trajec-
tory of the molecular angular momentum parallel to the
electric field. The loss rate from the trap is estimated by
4πν2

0/
√
δ2 + 4ν2

0 , where ν0 is the molecular secular mo-
tion frequency, and δ is the transition frequency between
the (J = 1,M = 0) and (J = 1,M = ±1) states [7]. Tak-
ing ν0 = 5 kHz and δ = 500 MHz, the rate of loss caused
by the Majorana effect is 0.5 /s.

This paper discusses the collision between linear polar
molecules in a 1Σ state, trapped in a quadrupole elec-
trode. The inelastic collision rate should be decreased to
increase the trap duration. However, the rate of elastic
collisions should be increased to improve the efficiency of
the evaporative cooling. We calculated the inelastic and
elastic collision cross-sections of linear polar molecules in
a (J = 1,M = 0) state. We took only the dipole-dipole in-
teraction into account, as Bohn did [4]. The kinetic energy
of the trapped molecules was taken to be several hundred
mK, as presently obtained [1,3] (Bohn calculated taking
the kinetic energy 1 µK [4]). For linear polar molecules in
a 1Σ state, the diagonal matrix element of the dipole mo-
ment is proportional to the strength of the electric field.
Therefore, the dependence of a collision cross-section on
the strength of the electric field is quite different from the
dependence for polar symmetric-top molecules, which can
be trapped in a hexapole electrode by the first-order Stark
effect.
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2 Calculation of collision cross-section

The cross-section that a molecule can achieve in a transi-
tion (J,M) = (Jf ,Mf)← (Ji,Mi) through the collision is
described by

σ(Jf ,Mf ,Ji,Mi) =
π

k2

∑
(2L+ 1)P [L, (Jf ,Mf ← Ji,Mi)]

(1)

where k is the incident wave number, L is the quantum
number for the angular moment of the molecular relative
motion, and P is the opacity function [8]. When the inter-
molecular interaction is small enough, P is obtained using
the first Born approximation [9].

When 1/k is much smaller than the scale size of the
intermolecular potential (d), (1) is rewritten as

σ(Jf ,Mf ,Ji,Mi) =
∫ ∞

0

2πbP(Jf ,Mf ,Ji,Mi) (b) db

b =
1
k

(
L+

1
2

)
(2)

here b is called the impact parameter [8].
Here we calculate the collision cross-section using (2),

taking the molecular relative velocity (v) 19 m/s or
8.5 m/s (1/k is on the order of 1–5 A). If the value
of σ (= πd2) obtained by the semi-classical treatment
is much larger than π/k2, this treatment is reasonable.
If σ < π/k2 (d < 1/k) is obtained by the semi-classical
treatment, the collision cross-section should be obtained
by (1). In this case, the actual value of the collision cross-
section is in maximum π/k2 because of P (L: L ≥ 1) �
P (L = 0) ≤ 1.

Assuming the classical path, P is obtained using

P(Jf ,Mf ,Ji,Mi) (b) =
∑

Jpi,Mpi

ρ (Jpi,Mpi)

×
∑

Jpf,iMpf,i

|(1/~)
∫ ∞
−∞
〈Jf ,Mf , J

′
pf ,M

′
pf |V (r)|Ji,Mi, Jpi,Mpi〉dt|2

r =
√
b2 + (vt)2 (3)

where (Jpi,Mpi) and (Jpf ,Mpf) denote the (J,M) state
of the collision partner before and after the collision, re-
spectively. ρ(Jpi,Mpi) is the distribution of the (Jpi,Mpi)
state, taking

∑
Jpi,Mpi

ρ(Jpi,Mpi) = 1. V (r) is the intermolec-

ular potential. Assuming that the intermolecular potential
is determined only by the dipole-dipole interaction (this
assumption is valid for the collision between molecules
with dipole moment larger than 0.7 D [10]), V is de-
scribed by

V =
1
r3

(
µa · µp −

3 (µa · r) (µp · r)
r2

)
(4)

where µa,p denotes the dipole moment of the probing
molecule and the collision partner, respectively. We per-
formed the numerical calculation of collision cross-sections

using the Quantum-Fourier-transform (QFT) theory [11],
with which the momentum and the energy are conserved
strictly

P(Jf ,Mf ,Ji,Mi) (b) = min
(
1, Q(Jf ,Mf ,Ji,Mi) (b)

)
. (5)

Here Q(Jf ,Mf ,Ji,Mi) (b) is obtained using the first Born ap-
proximation seen below. With a small b (strong inter-
action), the first Born approximation is not valid and
P(Jf ,Mf ,Ji,Mi) (b) = 1 is used for simplicity (P (b) ≤ 1 must
always hold) [12]

Q(Jf ,Mf ,Ji,Mi)(b) =
32α2

27π~2v2b4

∑
Jpi,Mpi

ρ (Jpi,Mpi)

×
∑

Jpf ,Mpf

|〈Jf ,Mf |µa|Ji,Mi〉|2

× |〈Jpf ,Mpf |µp|Jpi,Mpi〉|2 f (Jpf ,Mpf)

(Jpi,Mpi)
(∆)

f
(Jpf ,Mpf)

(Jpi,Mpi)
(∆) = exp

[
−4∆2

πα2

]
∆ =

b

~v
[R (Jf ,Mf) +R (Jpf ,Mpf)

−R (Ji,Mi)−R (Jpi,Mpi)]
R (J,M) = hBJ (J + 1) + S (J,M) . (6)

Here α is an arbitrary (dimensionless) constant, which
cannot be determined just by QFT theory. Davies recom-
mends to take α =

√
3π/4 (QFT-I), so that the formula

of P (b) converges to the Anderson-Tsao-Curnutte (ATC)
theory with ∆→ 0 (with ATC theory, the energy is con-
served only with ∆ = 0) [11–13]. E is the strength of the
electric field and B is the molecular rotational constant.
S(J,M) is the electric potential energy. When the strength
of the electric field is low (S(J,M) � 2hBJ), S(J,M) is
obtained by the second-order perturbation as

S (J,M) ' DE2

2J (J + 1)
J (J + 1)− 3M2

(2J − 1) (2J + 3)

D =
µ2

hB
· (7)

3 Results of calculation

Here, the collision cross-sections (σ(Jf ,Mf)) of the linear
polar molecules are discussed with (Ji,Mi) = (Jpi,Mpi) =
(1, 0), assuming that the fractions of the molecules in
J > 2 states are negligibly small. This assumption is rea-
sonable as (J,M) = (1, 0) is the lowest energy state of
the low-field seeking states, and the trapping force for
molecules in J > 2 states is much smaller than in the
(J,M) = (1, 0) state when the strength of the electric
field is low (S (1, 0) � 2hB). Table 1 gives the formulas
for |〈Jf ,Mf |µ| 1, 0〉|2. The values of µ and B are given in
Table 2 for the OCS, HCN, and NaCl molecules. The non-
zero matrix elements are 〈0, 0 |µ| 1, 0〉, 〈2, 0 |µ| 1, 0〉, and
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Table 1. Square of the absolute value of the matrix elements
of the dipole moment.

|〈1, 0 |µ| 1, 0〉|2 µ4E2/25h2B2

|〈1,±1 |µ| 1, 0〉|2 µ4E2/50h2B2

|〈0, 0 |µ| 1, 0〉|2 µ2/3

|〈2, 0 |µ| 1, 0〉|2 4µ2/15

|〈2,±1 |µ| 1, 0〉|2 µ2/5

Table 2. Cross-section of collisional transition from the
(J,M) = (1, 0) state to the (0, 0) state for OCS, HCN, and
NaCl molecules. The relative velocity is taken to be 19 m/s
and 8.5 m/s key.

µ(D) B(GHz) σ
v= 19 m/s

(0,0) (A2) σ
v= 8.5 m/s

(0,0) (A2)

OCS 0.71 6.09 43.4 19.0

HCN 2.94 44.4 6.02 1.34

NaCl 8.50 6.53 287 62.8

〈2,±1 |µ| 1, 0〉. Also, 〈1, 0 |µ| 1, 0〉 and 〈1,±1 |µ| 1, 0〉 be-
come non-zero when the electric field is given. The for-
mulas for 〈1, 0 |µ| 1, 0〉 and 〈1,±1 |µ| 1, 0〉 are obtained us-
ing the first-order perturbation theory. The collision loss
rate is determined by σ(0,0) and σ(1,±1), and the elastic
collision rate is determined by σ(1,0).

Here, we discuss the correlation between the collision
cross-sections and the electrostatic potential of trapped
molecules (U). When the strength of the electric field is
low enough (U � 2hB), U is obtained by

U = S (1, 0) ' DE2

10
· (8)

σ(0,0) is almost constant while U � 2hB, be-

cause f
(Jpf ,Mpf)

(1,0) (∆) are determined mostly by Bb/v for
(Jpf ,Mpf) = (1, 0), (1,±1), (0, 0), (2, 0), and (2,±1). Ta-
ble 2 shows the values of σ(0,0) in a zero-electric field for
OCS, HCN and NaCl molecules, taking v = 19 m/s or
8.5 m/s.

Figure 1 shows σ(1,±1) as a function of U for OCS,
HCN, and NaCl molecules. In this case, (6) is approxi-
mately rewritten as (with U � B)

Q(1,0,1,±1) (b) ' 64
9~2v2b4

U2D2

[
exp

[
−12U2b2

π2h2v2

]
+ exp

[
−48U2b2

π2h2v2

]]
with

Ub

hv
� 1

' 64
9~2v2b4

U2D2 exp
[
−12U2b2

π2h2v2

]
· (9)

In fact σ(1,±1) reaches a maximum at a specific value of
U (Up). As D/v increases, Up decreases. σ(1,±1) is much

Fig. 1. Cross-sections of collisional (J,M) = (1, 0) → (1,±1)
transition of OCS, HCN, and NaCl molecules as a function of
the electrostatic potential of trapped molecules (U). The solid
and dotted line show cases with a mean relative velocity of
19 m/s and 8.5 m/s, respectively.

larger than σ(0,0) at U > 3 mK, so the collision loss rate
is actually determined mostly by σ(1,±1).

Figure 2 shows σ(1,0) as a function of U for the OCS,
HCN, and NaCl molecules. The figure shows that σ(1,0)

is almost proportional to UD/v. This result can be ex-
plained as follows. With 2Bb/hv � Ub/hv � 1, (6) is
approximately rewritten as (see Tab. 1)

Q(1,0,1,0) (b) =
128

9~2v2b4
U2D2. (10)

As b0 is proportional to
√
UD/v (b0 is the value which

Q(b0) = 1), σ(1,0) = 2πb20 should be proportional to UD/v
while Ub0/hv � 1 [12]. As the elastic collision rate is
determined by nvσ(1,0) (n is the molecular density), the
elastic collision rate should be constant with any value of
v. But when 2B / U (high electric field) or Ub0/hv / 1
(low electric field), the proportionality between σ(1,0) and
UD/v is not valid.
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Fig. 2. Elastic collision cross-section of OCS, HCN, and NaCl
molecules in the (J,M) = (1, 0) state as a function of the
electrostatic potential energy of the trapped molecules (U).
The solid and dotted lines show the cases with a mean relative
velocity of 19 m/s and 8.5 m/s, respectively.

If we can achieve a small K = σ(1,±1)/σ(1,0), we can
get highly efficient evaporative cooling effect with a low
collision loss rate. Figure 3 shows K for the OCS, HCN,
and NaCl molecules as a function of U , taking v = 8.5 m/s.
As U increases, K decreases rapidly. With U < 10 mK,
the values of K are almost in the same order for the three
different molecules. But at U > 10 mK, K (NaCl) is much
smaller than K (OCS) and K (HCN).

At U → 0, the calculated values of σ(1,±1) and σ(1,0)

converge to zero, because only the dipole-dipole interac-
tion is taken into account. In fact, they converge to cer-
tain values, as determined by the higher order interaction
(∝ r−6).

4 Discussion

The focus of our research is the collisions between
molecules that are electrostatically trapped, which differ

Fig. 3. K = σ(1,±1)/σ(1,0) of OCS, HCN, and NaCl molecules
in the (J,M) = (1, 0) state as a function of the electrostatic
potential energy of trapped molecules. Here the mean relative
velocity is 8.5 m/s.

from the collisions in cells at room temperature on the
following points.

1. Without an electric field, 〈J,M |µ|J,M〉 and
〈J,M ± 1 |µ|J,M〉 are zero for linear polar molecules.
But these matrix elements are non-zero, because
trapped molecules are under electric field. Both elastic
and inelastic collisions are mainly caused by the
dipole-dipole interaction.

2. Only low-field seeking molecules can be electrostat-
ically trapped. The collision partner molecules may
therefore be in limited quantum states.

3. The kinetic energy of molecules trapped in a conven-
tional hyperboloid electrode is in the order of several
hundred mK [7]. In a ring electrode, the kinetic energy
of trapped molecules may be almost the same order at
room temperature [14].

For linear polar molecules at (J,M) = (1, 0) state that
are electrostatically trapped, σ(0,0) is much smaller than
σ(1,0) and σ(1,±1) at U > 3 mK, although |〈0, 0 |µ| 1, 0〉| is
much larger than |〈1, 0 |µ| 1, 0〉| and |〈1,±1 |µ| 1, 0〉|. This
is because the collision partner molecules are mostly in the
(Jpi,Mpi) = (1, 0) state. If the collision partner molecules
were at (Jpi,Mpi) = (0, 0) state, σ(0,0) becomes much
larger than σ(1,0) and σ(1,±1).

We have calculated the collisional cross-section using
the semi-classical treatment. This treatment is valid for
σ(1,0) and σ(1,±1) at U > 10 mK, where they become larger
than 200 A2

(
� π/k2

)
. The semi-classical treatment gives

smaller values of σ(0,0)(HCN) than π/k2 (≈ 50 A2 with
v = 8.5 m/s, 10 A2 with v = 19 m/s). So the semi-classical
treatment does not give accurate values of σ(0,0)(HCN).
The actual values of σ(0,0)(HCN) can be in maximum
π/k2, which is still much smaller than σ(1,±1). So the colli-
sion loss rate can be estimated well with the semi-classical
treatment.

Taking a molecular density of 1 × 1010 cm3 and a
mean relative velocity of 8.5 m/s, the collision loss rate
of the OCS, HCN, and NaCl molecules reach a maximum
of 1 /s (U ≈ 30 mK), 2 /s (U ≈ 30 mK), and 46 /s (at
U ≈ 10 mK), respectively. We can reduce the collision loss
rate by giving a non-zero minimum value of U (Umin) at
the trap center (Umin > 30 mK for the OCS and HCN
molecules and Umin > 10 mK for the NaCl molecule).
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Assuming that the molecules are trapped in an ideal
hyperboloid electrode (DC-voltage is given to the ring
electrode), a non-zero value of Umin can be given using
the following method. Given an AC-voltage between the
two end-caps, the strength of the electric field becomes
zero at (0, 0, z0 sin (ωt)), where z0 is the constant deter-
mined by the AC-voltage amplitude. The electric field
is given by (Ex, Ey, Ez) = C (x, y,−2z + 2z0 sin (ωt)),
where C is the constant determined by the DC-
voltage. The mean strength of the electric field becomes
C
√
x2 + y2 + 4z2 + 2z2

0, whose minimum value is
√

2Cz0.
Given the appropriate values of Umin = (DC2/5)z2

0, the
efficiency of the evaporative cooling is improved keeping
the collision loss rate low (K is low at U > Umin). The
trap loss caused by the Majorana effect is also reduced,
given the non-zero values of Umin [7].

When molecules (not linear) are confined by the first
order Stark effect, trapped molecules are mostly in a
|KM | ≈ J2 state (K is the angular momentum trajec-
tory parallel to the molecular axis). The cross-section of
the elastic collision is larger than that in a cell, where the
molecules are uniformly distributed to all values of M be-
tween −J and J . The elastic collision cross-section has a
very small dependence on the strength of the electric field,
because the diagonal matrix element of the dipole moment
is almost constant within the feasible strength of the elec-
tric field. The inelastic collision cross-section decreases as
the strength of the electric field increases because of the
larger energy gap between different M states.

5 Conclusion

We calculated the inelastic and elastic collision cross-
sections of linear polar molecules in the (J,M) = (1, 0)
state. For the electrostatically trapped molecules, the
collision cross-section of the transition to the (J,M) =
(1,±1) state is much larger than the cross-section of the
transition to the (J,M) = (0, 0). The collision cross-
section of the transition to the (J,M) = (1,±1) state
reaches a maximum at a specific strength of the electric

field. The elastic collision cross-section is proportional to
the square of the electric field (proportional to the electro-
static potential energy). To perform evaporative cooling
with a low collision loss rate, increasing the electric field
strength is preferable.

We assumed that two colliding molecules experience
the same electric field strength. This assumption is rea-
sonable, as intermolecular interaction occurs only when
the intermolecular distance is much less than 1 µm and
the gradient of the electric field strength is actually less
than 10 kV/mm2.
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